lek-tin:

Flatten 2d Vector

Design and implement an iterator to flatten a 2d vector. It should support the following operations: next and hasNext. Example Vector2D iterator = new Vector2D([[1,2],[3],[4]]); iterator.next(); // return 1 iterator.next(); // return 2 iterator.next(); // return 3 iterator.hasNext(); // return true iterator.hasNext(); // return true iterator.next(); // return 4 iterator.hasNext(); // return false Notes Please remember to RESET your class variables declared in Vector2D, as static/class variables are persisted across multiple test cases.

by lek tin in "algorithm" access_time 2-min read

Utf 8 Validation

A character in UTF8 can be from 1 to 4 bytes long, subjected to the following rules: For 1-byte character, the first bit is a 0, followed by its unicode code. For n-bytes character, the first n-bits are all one’s, the n+1 bit is 0, followed by n-1 bytes with most significant 2 bits being 10. This is how the UTF-8 encoding would work: Char. number range | UTF-8 octet sequence (hexadecimal) | (binary) --------------------+--------------------------------------------- 0000 0000-0000 007F | 0xxxxxxx 0000 0080-0000 07FF | 110xxxxx 10xxxxxx 0000 0800-0000 FFFF | 1110xxxx 10xxxxxx 10xxxxxx 0001 0000-0010 FFFF | 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx Given an array of integers representing the data, return whether it is a valid utf-8 encoding.

by lek tin in "algorithm" access_time 2-min read

Design Circular Queue

Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called “Ring Buffer”. One of the benefits of the circular queue is that we can make use of the spaces in front of the queue.

by lek tin in "algorithm" access_time 3-min read

Decode String

Given an encoded string, return its decoded string. The encoding rule is: k[encoded_string], where the encoded_string inside the square brackets is being repeated exactly k times. Note that k is guaranteed to be a positive integer. You may assume that the input string is always valid; No extra white spaces, square brackets are well-formed, etc. Furthermore, you may assume that the original data does not contain any digits and that digits are only for those repeat numbers, k.

by lek tin in "algorithm" access_time 1-min read

Surrounded Regions

Given a 2D board containing 'X' and 'O' (the letter O), capture all regions surrounded by 'X'. A region is captured by flipping all 'O's into 'X's in that surrounded region. Example X X X X X O O X X X O X X O X X After running your function, the board should be: X X X X X X X X X X X X X O X X Explanation Surrounded regions shouldn’t be on the border, which means that any 'O' on the border of the board are not flipped to 'X'.

by lek tin in "algorithm" access_time 2-min read

Course Schedule II

There are a total of n courses you have to take, labeled from 0 to n-1. Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1] Given the total number of courses and a list of prerequisite pairs, return the ordering of courses you should take to finish all courses. There may be multiple correct orders, you just need to return one of them.

by lek tin in "algorithm" access_time 2-min read

Flatten Binary Tree to Linked List

Given a binary tree, flatten it to a linked list in-place. For example, given the following tree: 1 / \ 2 5 / \ \ 3 4 6 The flattened tree should look like: 1 \ 2 \ 3 \ 4 \ 5 \ 6 Solution # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.

by lek tin in "algorithm" access_time 1-min read

Flatten a Multilevel Doubly Linked List

You are given a doubly linked list which in addition to the next and previous pointers, it could have a child pointer, which may or may not point to a separate doubly linked list. These child lists may have one or more children of their own, and so on, to produce a multilevel data structure, as shown in the example below. Flatten the list so that all the nodes appear in a single-level, doubly linked list.

by lek tin in "algorithm" access_time 3-min read

Optimal Account Balancing

A group of friends went on holiday and sometimes lent each other money. For example, Alice paid for Bill’s lunch for $10. Then later Chris gave Alice $5 for a taxi ride. We can model each transaction as a tuple (x, y, z) which means person x gave person y $z. Assuming Alice, Bill, and Chris are person 0, 1, and 2 respectively (0, 1, 2 are the person’s ID), the transactions can be represented as [[0, 1, 10], [2, 0, 5]].

by lek tin in "algorithm" access_time 2-min read

Split Array Into Consecutive Subsequences

Given an array nums sorted in ascending order, return true if and only if you can split it into 1 or more subsequences such that each subsequence consists of consecutive integers and has length at least 3. Example 1 Input: [1,2,3,3,4,5] Output: True Explanation: You can split them into two consecutive subsequences : 1, 2, 3 3, 4, 5 Example 2 Input: [1,2,3,3,4,4,5,5] Output: True Explanation: You can split them into two consecutive subsequences : 1, 2, 3, 4, 5 3, 4, 5 Example 3 Input: [1,2,3,4,4,5] Output: False Constraints 1 <= nums.

by lek tin in "algorithm" access_time 2-min read