Design Circular Queue
Created: March 25, 2020 by [lek-tin]
Last updated: March 25, 2020
Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called “Ring Buffer”.
One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.
Your implementation should support following operations:
1. MyCircularQueue(k)
: Constructor, set the size of the queue to be k.
2. Front
: Get the front item from the queue. If the queue is empty, return -1.
3. Rear
: Get the last item from the queue. If the queue is empty, return -1.
4. enQueue(value)
: Insert an element into the circular queue. Return true if the operation is successful.
5. deQueue()
: Delete an element from the circular queue. Return true if the operation is successful.
6. isEmpty()
: Checks whether the circular queue is empty or not.
7. isFull()
: Checks whether the circular queue is full or not.
Example
MyCircularQueue circularQueue = new MyCircularQueue(3); // set the size to be 3
circularQueue.enQueue(1); // return true
circularQueue.enQueue(2); // return true
circularQueue.enQueue(3); // return true
circularQueue.enQueue(4); // return false, the queue is full
circularQueue.Rear(); // return 3
circularQueue.isFull(); // return true
circularQueue.deQueue(); // return true
circularQueue.enQueue(4); // return true
circularQueue.Rear(); // return 4
Note
- All values will be in the range of
[0, 1000]
. - The number of operations will be in the range of
[1, 1000]
. - Please do not use the built-in Queue library.
Solution (array)
class MyCircularQueue:
def __init__(self, k: int):
"""
Initialize your data structure here. Set the size of the queue to be k.
"""
self.cap = k
self.size = 0
self.head = 0
self.queue = [None for _ in range(k)]
def enQueue(self, value: int) -> bool:
"""
Insert an element into the circular queue. Return true if the operation is successful.
"""
if self.isFull():
return False
newTail = (self.head + self.size) % self.cap
self.queue[newTail] = value
self.size += 1
return True
def deQueue(self) -> bool:
"""
Delete an element from the circular queue. Return true if the operation is successful.
"""
if self.isEmpty():
return False
self.queue[self.head] = None
self.size -= 1
self.head = (self.head + 1 ) % self.cap
return True
def Front(self) -> int:
"""
Get the front item from the queue.
"""
if self.isEmpty():
return -1
return self.queue[self.head]
def Rear(self) -> int:
"""
Get the last item from the queue.
"""
if self.isEmpty():
return -1
tail = (self.head + self.size - 1) % self.cap
return self.queue[tail]
def isEmpty(self) -> bool:
"""
Checks whether the circular queue is empty or not.
"""
return self.size == 0
def isFull(self) -> bool:
"""
Checks whether the circular queue is full or not.
"""
return self.size == self.cap
# Your MyCircularQueue object will be instantiated and called as such:
# obj = MyCircularQueue(k)
# param_1 = obj.enQueue(value)
# param_2 = obj.deQueue()
# param_3 = obj.Front()
# param_4 = obj.Rear()
# param_5 = obj.isEmpty()
# param_6 = obj.isFull()
Solution (linked list)