Interval List Intersections
Created: March 16, 2020 by [lek-tin]
Last updated: April 23, 2020
Given two lists of closed intervals, each list of intervals is pairwise disjoint and in sorted order.
Return the intersection of these two interval lists.
(Formally, a closed interval [a, b]
(with a <= b
) denotes the set of real numbers x
with a <= x <= b
. The intersection of two closed intervals is a set of real numbers that is either empty, or can be represented as a closed interval. For example, the intersection of [1, 3]
and [2, 4] is [2, 3]
.)
Example 1
Input: A = [[0,2],[5,10],[13,23],[24,25]], B = [[1,5],[8,12],[15,24],[25,26]]
Output: [[1,2],[5,5],[8,10],[15,23],[24,24],[25,25]]
Reminder: The inputs and the desired output are lists of Interval objects, and not arrays or lists.
Constraints
0 <= A.length < 1000
0 <= B.length < 1000
0 <= A[i].start, A[i].end, B[i].start, B[i].end < 10^9
NOTE: input types have been changed on April 15, 2019. Please reset to default code definition to get new method signature.
Solution
Java
class Solution {
public int[][] intervalIntersection(int[][] A, int[][] B) {
int i = 0, j = 0;
ArrayList<int[]> res = new ArrayList<>();
while (i < A.length && j < B.length) {
int low = Math.max(A[i][0], B[j][0]);
int high = Math.min(A[i][1], B[j][1]);
if (low <= high) {
res.add(new int[]{low, high});
}
if (A[i][1] < B[j][1]) {
i++;
} else {
j++;
}
}
return res.toArray(new int[res.size()][2]);
}
}
Python
class Solution:
def intervalIntersection(self, A: List[List[int]], B: List[List[int]]) -> List[List[int]]:
ans = []
i = j = 0
while i < len(A) and j < len(B):
# Let's check if A[i] intersects B[j].
# lo - the startpoint of the intersection
# hi - the endpoint of the intersection
lo = max(A[i][0], B[j][0])
hi = min(A[i][1], B[j][1])
if lo <= hi:
ans.append([lo, hi])
# Remove the interval with the smaller endpoint
if A[i][1] < B[j][1]:
i += 1
else:
j += 1
return ans