Word Search II
Created: April 8, 2019 by [lek-tin]
Last updated: April 7, 2020
Given a 2D board and a list of words from the dictionary, find all words in the board.
Each word must be constructed from letters of sequentially adjacent cell, where “adjacent” cells are those horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.
Example:
Input:
board = [
['o','a','a','n'],
['e','t','a','e'],
['i','h','k','r'],
['i','f','l','v']
]
words = ["oath","pea","eat","rain"]
Output: ["eat","oath"]
Note
- All inputs are consist of lowercase letters
a-z
. - The values of
words
are distinct.
Solution
Time: O(m * n * l)
Space: O(m*n + l)
class TrieNode(object):
# Initialize your data structure here.
def __init__(self):
self.isString = False
self.children = {}
# Inserts a word into the trie.
def insert(self, word):
cur = self
for c in word:
if not c in cur.children:
cur.children[c] = TrieNode()
cur = cur.children[c]
cur.isString = True
class Solution:
def findWords(self, board: List[List[str]], words: List[str]) -> List[str]:
"""
:type board: List[List[str]]
:type words: List[str]
:rtype: List[str]
"""
visited = [[False for j in range(len(board[0]))] for i in range(len(board))]
result = {}
trie = TrieNode()
for word in words:
trie.insert(word)
for i in range(len(board)):
for j in range(len(board[0])):
self.findBFS(board, trie, 0, i, j, visited, [], result)
return result.keys()
def findBFS(self, board, trie, cur, i, j, visited, cur_word, result):
if not trie or i < 0 or i >= len(board) or j < 0 or j >= len(board[0]) or visited[i][j]:
return
if board[i][j] not in trie.children:
return
cur_word.append(board[i][j])
next_node = trie.children[board[i][j]]
if next_node.isString:
result["".join(cur_word)] = True
visited[i][j] = True
self.findBFS(board, next_node, cur + 1, i + 1, j, visited, cur_word, result)
self.findBFS(board, next_node, cur + 1, i - 1, j, visited, cur_word, result)
self.findBFS(board, next_node, cur + 1, i, j + 1, visited, cur_word, result)
self.findBFS(board, next_node, cur + 1, i, j - 1, visited, cur_word, result)
visited[i][j] = False
cur_word.pop()