Tags: "leetcode", "matrix", "dynamic-programming", access_time 2-min read

Edit this post on Github

Minimum Path Sum

Created: September 2, 2019 by [lek-tin]

Last updated: April 18, 2020

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note You can only move either down or right at any point in time.

Example

Input:
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
Output: 7

Explanation Because the path 1→3→1→1→1 minimizes the sum.

Solution 1 (DP with n extra space)

Python

class Solution:
    def minPathSum(self, grid: List[List[int]]) -> int:
        m = len(grid)
        n = len(grid[0])

        if m == 0 or n == 0:
            return 0

        sums = [[0 for _ in range(n)] for _ in range(m)]
        sums[0][0] = grid[0][0]

        for i in range(1, m):
            sums[i][0] = sums[i-1][0] + grid[i][0]

        for i in range(1, n):
            sums[0][i] = sums[0][i-1] + grid[0][i]

        for i in range(1, m):
            for j in range(1, n):
                sums[i][j] = min(sums[i-1][j], sums[i][j-1]) + grid[i][j]

        return sums[-1][-1]

Java

class Solution {
    public int minPathSum(int[][] grid) {
        if (grid.length == 0 || grid[0].length == 0) {
            return 0;
        }

        int N, M;
        N = grid.length;
        M = grid[0].length;
        int[] dp = new int[M];

        for (int i = N-1; i >= 0; i--) {
            for (int j = M-1; j >= 0; j--) {
                if (i != N-1 && j != M-1) {
                    dp[j] = grid[i][j] + Math.min(dp[j], dp[j+1]);
                } else if (i != N-1 && j == M-1) {
                    dp[j] = grid[i][j] + dp[j];
                } else if (i == N-1 && j != M-1) {
                    dp[j] = grid[i][j] + dp[j+1];
                } else {
                    dp[j] = grid[i][j];
                }
            }
        }

        return dp[0];
    }
}

Solution 2 (DP with no extra space)

class Solution:
    def minPathSum(self, grid):
        """
        :type grid: List[List[int]]
        :rtype: int
        """
        for r in range(len(grid)):
            for c in range(len(grid[0])):
                if (r == 0 and c != 0):
                    grid[r][c] += grid[r][c-1]
                if (r != 0 and c == 0):
                    grid[r][c] += grid[r-1][c]
                if (r != 0 and c != 0):
                    grid[r][c] += min(grid[r-1][c], grid[r][c-1])

        return grid[len(grid) - 1][len(grid[0]) - 1]